Format

Send to

Choose Destination
  • This is a preview / test site. Please update your PubMed URL to pubmed.gov.
See comment in PubMed Commons below
ACS Med Chem Lett. 2017 Sep 27;8(10):1048-1053. doi: 10.1021/acsmedchemlett.7b00258. eCollection 2017.

Identification of Potent and Selective RIPK2 Inhibitors for the Treatment of Inflammatory Diseases.

Author information

  • 1Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States.

Abstract

NOD2 (nucleotide-binding oligomerization domain-containing protein 2) is an internal pattern recognition receptor that recognizes bacterial peptidoglycan and stimulates host immune responses. Dysfunction of NOD2 pathway has been associated with a number of autoinflammatory disorders. To date, direct inhibitors of NOD2 have not been described due to technical challenges of targeting the oligomeric protein complex. Receptor interacting protein kinase 2 (RIPK2) is an intracellular serine/threonine/tyrosine kinase, a key signaling partner, and an obligate kinase for NOD2. As such, RIPK2 represents an attractive target to probe the pathological roles of NOD2 pathway. To search for selective RIPK2 inhibitors, we employed virtual library screening (VLS) and structure based design that eventually led to a potent and selective RIPK2 inhibitor 8 with excellent oral bioavailability, which was used to evaluate the effects of inhibition of RIPK2 in various in vitro assays and ex vivo and in vivo pharmacodynamic models.

KEYWORDS:

NOD2; RIPK2; kinase inhibitors; structure-based drug design

PMID:
29057049
PMCID:
PMC5641954
[Available on 2018-10-12]
DOI:
10.1021/acsmedchemlett.7b00258
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center